

ПРОИЗВОДСТВО И ПОСТАВКИ ИНЕРЦИАЛЬНЫХ ИЗМЕРИТЕЛЬНЫХ МОДУЛЕЙ И НАВИГАЦИОННЫХ СИСТЕМ

О КОМПАНИИ

Компания Sensset занимается разработкой инерциальных систем, является инновационной и технически продвинутой организацией, специализирующейся на создании высокоточных и надежных инерциальных систем для различных промышленных и специальных назначений. Мы предлагаем широкий спектр инерциальных систем, включая гироскопы, акселерометры, компасы и комплексные навигационные системы. Наши продукты отличаются высокой точностью, стабильностью и надежностью, что делает их превосходным выбором для аэрокосмической, военной, автомобильной, морской, геодезической и других отраслей.

QR КОД АКТУАЛЬНЫХ ВЕРСИЙ КАТАЛОГОВ SENSSET:

ИНЕРЦИАЛЬНЫЕ ДАТЧИКИ

ПРОМЫШЛЕННЫЕ ДАТЧИКИ

Гарантируем соблюдение всех стандартов, высокий уровень качества компонентов, полную защиту прав заказчика на конечный продукт.

СОДЕРЖАНИЕ

1.	MEMS Датчики	4
2.	Кварцевые акселерометры	8
3.	Волоконно-оптические гироскопы	.12
4.	Динамически-настраиваемые гироскопы	18
5.	Поплаковковый гироскоп	.22
6.	Лазерные гироскопы	23
7.	Инерциальные навигационные системы	.26
8.1	Системы на MEMS датчиках	.26
8.2	Системы на волоконно-оптических гироскопах	.30
9.	AHRS модули	33
10.	Блоки чувствительных элементов	.34
10.1	БЧЭ на MEMS датчиках	.34
10.2	БЧЭ на волоконно-оптических гироскопах	38
11	Инкпинометры	42

SSA-LC2M0

ОДНООСНЫЙ MEMS АКСЕЛЕРОМЕТР

Параметр	Модель	SSA- LC2M002	SSA- LC2M003	SSA- LC2M010	SSA- LC2M030			
Диапазон измер	ения, д	±2	±3	±10	±30			
Нелинейность,	%	0.1	0.1	0.1	0.1			
Частота	±5%	>100	>100	60	60			
ответа, Гц	±3 дБ	>1000	>1000	200	200			
Плотность шума	а, мкg/√Гц	0.9	1.0	3.2	2.5			
Температурное мg/°С	смещение нуля	0.2	0.2	0.2	0.2			
Стабильность с	мещения нуля, мд	0.03	0.03	0.03	0.03			
Масштабный ко	эффициент, мВ/g	1800	1200	360	120			
	Масштабный коэффициент температуры, ppm/°С		50	50	50			
Диапазон рабоч	их температур, ℃	-40~125						
Размеры, мм		8.9*8.9*3.3						
Вес, г		0.639						

ОПИСАНИЕ

SSA-LC2M0 — это высокопроизводительные одноосные емкостные акселерометры с замкнутым контуром, которые подходят для создания сейсмических мониторов, приборов инерциальной навигации в авионике, разработки навигационной системы БПЛА и обеспечаения стабильной ори ентации в пространстве, управления движением на железнодорожных путях и станциях. Данный акселерометр имеет аналоговый выход.

ОБЛАСТИ ПРИМЕНЕНИЯ

- Робототехника
- Автотранспортная навигация
- Беспилотные автомобили
- Беспилотные суда
- БПЛА

SSA-DM12

ОДНООСНЫЙ ЦИФРОВОЙ MEMS АКСЕЛЕРОМЕТР

Модель Параметр	SSA-DM12A	SSA-DM12B	SSA-DM12C	SSA-DM12D		
Диапазон измерения, g	30	50	100	200		
Полоса пропускания, Гц		10	00			
Стабильность смещения нуля (10 с средн. 1σ), мкg	<50	<100	<200	<300		
Повторяемость смещения нуля (месяц.), мкg	300	500	1000	1500		
Коэффициент температурного смещения, мкg/°C	<30	<50	<100	<200		
Гистерезис температурного смещения, мд	<3	<5	<7	<10		
Нелинейность масштабного коэффициента, ppm	<1000	<2000	<3000	<3000		
Повторяемость масштабного коэффициента (месяц.), ppm	<300					
Температурный коэффициент масштабного коэффициента, ppm	10	10	10	10		
Коэффициент нелинейности второго порядка, мкg/g ²	<100	<100	<50	<50		
Масштабный коэффициент, LSB/g	250 000	160 000	80 000	40 000		
Время готовности, с	<1					
Выходная частота, Гц	2000					
Удар, g	10000					
Вибрации, mg/g _{RMS}	<0.5	<0.4	<0.15	<0.05		
Диапазон рабочих температур, $^{\circ}\!\mathbb{C}$	-45~+85					
Размеры, мм	5.8*7.6*3.0					

ОБЛАСТИ ПРИМЕНЕНИЯ

- Робототехника
- Автотранспортная навигация
- Беспилотные автомобили
- Беспилотные суда

БПЛА

SSA-MB15

ЕМКОСТНОЙ АНАЛОГОВЫЙ MEMS АКСЕЛЕРОМЕТР

КЛЮЧЕВЫЕ ОСОБЕННОСТИ

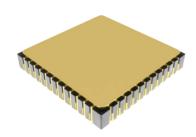
- Диапазон: ±2g/±3g с низким значением стабильности смещения
- Динамический диапазон: ≥110дБ, полоса пропускания (-3дБ): 200Гц
- Аналоговый выход
- Низкий уровень шума: ≤2.5 мкg(σ)/√Гц
- Нелинейность: 0.1% от полного диапазона

ОПИСАНИЕ

SSA-MB15 одноосевой/двухосевой/трёхосевой MEMS-емкостной акселерометр является одним из типов высокопроизводительных датчиков мониторинга вибрации, основанных на MEMS технологиях. Он работает от источника питания 7-24 В или 5 В ±3% и имеет интегрированные оси X-Y-Z (или одну ось), а также функцию самодиагностики. Он использует высокопроизводительный акселерометр SSA-LCM0xx с динамическим диапазоном до 110 дБ.

ОБЛАСТИ ПРИМЕНЕНИЯ

- Робототехника
- Инерциальные системы
- Анализ вибраций


- Беспилотные суда
- Сейсмический мониторниг

Параметр	SSA-MB15A	SSA-MB15B			
Диапазон линейных ускорений	±2 g	±2 g			
Смещение нуля	±100 мВ	±100 мВ			
Полоса пропускания	200 Гц	200 Гц			
Шум	2.5мкg/√Гц	2.5мкg/√Гц			
Смещение нуля по температуре	±0.2мg/°С				
Диапазон рабочих температур	-40~+85/-55	~+125°C			
Габаритные размеры	5мм				
Bec	абелем)				

SSG-M104

ОДНООСНЫЙ MEMS ГИРОСКОП

Модель Параметр	M104A	M104B	M104D	M104E	M104F	M104G	M104H
Диапазон,°/с	500	500	2000	100	400	4000	8000
Разрешение				24 бит			,
Частота вывода, Гц	12K	12K	12K	2K	12K	12K	12K
Общая задержка, мс	<1.5	<1.5	<1.5	6	<1.5	<1.5	<1.5
Фазовая задержка, °	<90	<90	<90	<90	<90	<90	<90
Полоса пропускания, Гц	200	200	180	50	180	200	180
Масштабный коэффициент (25°C) _, LSB/°/c	16000	16000	4000	80000	20000	2000	1000
Повторяемость, ppm	< 10	< 10	< 20	<100	< 20	< 10	< 20
Температурный дрейф, ppm	<50	<50	<100	300	100	100	100
Нелинейность, ppm	<150	<150	<100	<300	100	150	150
Нестабильность нулевого смещения (По Аллану @25°C), °/ч	<0.1	<0.5	<0.3	<0.02	0.05	<2	<1
Нестабильность нулевого смещения (10 сек) °/ч	<2	<5	<2.5	<0.1	<0.5	<10	<10
Коэффициент сл. ошибок $^{\circ}/_{^{1}}^{1/2}$.	<0.05	<0.25	<0.25	<0.005	<0.025	<0.5	<0.5
Повторяемость нулевого смещения, °/ч	<0.5	<3	<1	<0.1	<0.5	5	10
Шум peat to peak [°] /с	<0.3	<0.4	<0.5	<0.005	<0.3	1	2
Чувствительность g, °/ч/g	<1	<3	<1	<1	<1	<3	<1
Время запуска, мс				750			
Резонансная частота датчика, кГц 10.5 – 13.5							

SSA-QHTM

ВЫСОКОТЕМПЕРАТУРНЫЕ КВАРЦЕВЫЕ АКСЕЛЕРОМЕТРЫ

ОПИСАНИЕ

Кварцевый акселерометр высокотемпературного класса QTHM имеет малые габариты и высокую точность, отличается устойчивостью к высоким температурам и воздействию окружающей среды. Его выходной ток имеет форму линейной зависимости. Пользователи могут рассчитать, выбрать необходимое сопротивление нагрузки и добиться максимальной точности выходного сигнала.

Модель Параметр	QHTM1	QHTM2	
Диапазон измерения, g	±	30	
Порог чувствительности, мкд	3	0	
Смещение, мд	≤±20	≤±20	
Масштабный коэффициент, мА/g	1.9±2.1	1.9±2.1	
Дрейф смещения, мкд	≤±150	≤±220	
Смещение масштабного коэффициента по температуре, ppm/°C	≤150	≤220	
Смещение по температурному коэффициенту, мкg/°C	≤±100 ppm /°C	≤± 200 ppm /°C	
Шум (при сопротивлении 840 Ом), мВ	≤8	≤8.4	
Полоса пропускания, Гц	800~2500		
Вибрации	25g (20~2000Гц)		
Ударное воздействие	1000g		
Рабочая температура, °С	-40~+150	-40~+180	
Температура хранения, °С	-60~+180 -60~+200		
Размеры, мм	Ø18.2*16		
Вес, г	2	5	

Модель Параметр	QHTM3	QHTM4	QHTM5		
Диапазон измерения, g		±30			
Порог чувствительности, мкд		<10			
Смещение, мд	<10	<15	<15		
Масштабный коэффициент, мА/g		1.1~1.3			
Смещение по температурному коэффициенту, мкg/°C	<50	<100	<100		
Смещение масштабного коэффициента по температуре, ppm/°C	<100	<200	<200		
Шум	<3	000 мкд-СКВ (0-10000	Гц)		
Полоса пропускания, Гц	>300				
Ударное воздействие	500 g, 0.5 мс	1000 g, 0.5 мс	1000 g, 0.5 мс		
Вибрации		25 g, 30-500 Гц			
Размеры, мм	Ø25*18.4				
Диапазон рабочих температур, °С	-55~96	-55~155	-55 ~ 180		
Напряжение питания, В	±13 ~ ±18	±13 ~ ±18	±13 ~ ±18		
Вес, г		<55			

SSA-QTNM

ТАКТИЧЕСКИЕ КВАРЦЕВЫЕ АКСЕЛЕРОМЕТРЫ

ОПИСАНИЕ

Кварцевый акселерометр тактического класса QTNM имеет малые габариты и высокую точность, отличается длительной повторяемостью и отличной надежностью. Его выходной ток имеет форму линейной зависимости. Пользователи могут рассчитать, выбрать необходимое сопротивление нагрузки и добиться максимальной точности выходного сигнала.

Модель Параметр	QTNM1	QTNM2	QTNM3	QTNM6	QTNM7	QTNM8	
Диапазон измерений, g		±70			±50		
Чувствительность, мкд	5	5	5	5	5	5	
Смещение, мд	≤±3	≤±3	≤±5	≤±3	≤±3	≤±5	
Масштабный коэффициент, мА/g		0.8~1.2			1.05~1.30		
Дрейф смещения мкд (1σ, 1мес.)	≤10	≤20	≤30	≤10	≤20	≤30	
Температурный коэффициент смещения, µg /°С	≤±10	≤±30	≤±50	≤±10	≤±30	≤±50	
Температурный коэффициент масштабного коэффициента, ppm /°C	≤±20	≤±30	≤±50	≤±10	≤±30	≤±50	
Шум, мВ	≤5	≤5	≤5	≤5	≤8.4	≤8.4	
Собственная частота, Гц	400~800	400~800	400~800	400~800	400~800	400~800	
Полоса пропускания, Гц			800~	2500			
Вибрация			6 g(20-2	2000 Гц)			
Ударное воздействие	100 g, 8мс, 1/2sin						
Диапазон рабочих температур, °С	-55~+85						
Размеры, мм	Ø25.4*30						
Вес, г	≤80						

SSA-QSM

ПРОМЫШЛЕННЫЕ КВАРЦЕВЫЕ АКСЕЛЕРОМЕТРЫ

ОПИСАНИЕ

Кварцевый акселерометр промышленного класса QSM имеет малые габариты и высокую точность, отличается длительной повторяемостью и отличной надежностью. Его выходной ток имеет форму линейной зависимости. Пользователи могут рассчитать, выбрать необходимое сопротивление нагрузки и добиться максимальной точности выходного сигнала.

Модель Параметр	QSM1	QSM2	QSM3	QSM4	QSM5	QSM6	
Диапазон измерений, g		±60			±50		
Чувствительность, мкд	5	5	5	5	5	5	
Смещение, мд	≤±5	≤±5	≤±5	≤±3	≤±7	≤±10	
Масштабный коэффициент, мА/g		1.0±0.2			1.1~1.3		
Дрейф смещения, мкд	≤15	≤50	≤50	≤10	≤20	≤30	
Температурный коэффициент смещения, µg /°С	≤±15	≤±50	≤±50	≤±10	≤±30	≤±50	
Температурный коэффициент масштабного коэффициента, ppm/°С	≤±15	≤±80	≤±50	≤±20	≤±30	≤±50	
Шум, мВ	≤5	≤8.4	≤8.4	≤5	≤5	≤5	
Собственная частота, Гц	400~800	400~800	400~800	400~800	400~800	400~800	
Полоса пропускания, Гц	800~2500						
Вибрация	10 g(20-2000 Гц)						
Ударное воздействие	150 g,8 мс,1/2sin						
Диапазон рабочих температур, °С	-55~+85						
Размеры, мм	Ø18.2*23						
Вес, г			≤!	55			

SSG-DFM

СЕРИЯ ВОЛОКОННО-ОПТИЧЕСКИХ ГИРОСКОПОВ

Модель Параметры	DFM85A	DFM85B	DFM85C	DFM90A	DFM90B	DFM90C
Модель фото						
Диапазон угловых скоростей		±500 °/c			±500 °/c	
Стабильность смещения нуля (1 σ, 10 с)	<0.3 °/ч	<0.2 º/ч	<0.1 º/ч	<0.2	<0.1 º/ч	<0.05 °/ч
Повторяемость смещения нуля (1 σ)	<0.3 º/ч	<0.2 º/ч	<0.1 º/ч	<0.2 º/ч	<0.1 º/ч	<0.05 °/ч
Коэффициент свободного блуждания	<0.03 °/√ч	<0.02 °/√ч	<0.01 º/√ч	<0.5 °/√ч	<0.3 °/√ч	<0.15 °/√ч
Нелинейность масштабного коэффициента		<20 ppm (1 σ)		<20 ppm (1 σ)		
Повторяемость масштабного коэффициента		<20 ppm (1 σ)		<20 ppm (1 σ)		
Диапазон рабочих температур		-40°C~+70 °C		-40°C~+70 °C		
Размеры	Q	Ø50 мм x 25 мі	M	Ø	60 мм х 29.9 м	IM
Техническая документация		■ ####################################				

SSG-DFM

СЕРИЯ ВОЛОКОННО-ОПТИЧЕСКИХ ГИРОСКОПОВ

Модель Параметры	DFM95A	DFM95B	DFM100A	DFM100B	
Модель фото					
Диапазон угловых скоростей	±50	0 °/c	±50	0 °/c	
Стабильность смещения нуля (1 σ, 10 c)	<0.05 °/ч	<0.02°/ч	<0.02°/ч	<0.015 °/ч	
Повторяемость смещения нуля	<0.05 °/ч (1 σ)	<0.02 %ч (1 σ)	<0.02 °/ч (1 σ)	<0.01 %ч (1 σ)	
Коэффициент свободного блуждания	<0.005 °/√ч	<0.002 °/√ч	<0.005 °/√ч	<0.0015 °/√ч	
Нелинейность масштабного коэффициента	<20 ppm (1 σ)	<10 ppm (1 σ)	<20 ppm (1 σ)	<10 ppm (1 σ)	
Повторяемость масштабного коэффициента	<20 ppm (1 σ)	<10 ppm (1 σ)	<20 ppm (1 σ)	<10 ppm (1 σ)	
Диапазон рабочих температур	-40°C~	∕+70 °C	-40°C~	∕+70 °C	
Размеры	Ø70 мм	х 32 мм	Ø80 мм x 33 мм		
Техническая документация					

ОБЛАСТИ ПРИМЕНЕНИЯ

- Авиация
- Ракеты
- Умные боеприпасы

■ Беспилотные суда

- БПЛА
- Корабли

SSG-DFM

СЕРИЯ ВОЛОКОННО-ОПТИЧЕСКИХ ГИРОСКОПОВ

Модель Параметры	DFM105A	DFM105B	DFM105C	DFM110A	DFM110B	DFM110C
Модель фото						
Диапазон угловых скоростей		±500 °/c			±500 °/c	
Стабильность смещения нуля, (1 σ, 10 с)	<0.02 %ч	<0.015 °/ч	<0.01 %ч	≤0.01 %ч	≤0.007 °/ч	≤0.006 °/ч
Повторяемость смещения нуля (1 σ)	<0.02 °/ч	<0.015 °/ч	<0.01 °/ч	≤0.01 º/ч	≤0.007 °/ч	≤0.006 °/ч
Коэффициент свободного блуждания	<0.002 ⁰/√ч	<0.0015⁰/√ч	<0.001 ⁰/√ч	≤0.002 °/√ч	≤0.001 ⁰/√ч	≤0.001 °/√ч
Нелинейность масштабного коэффициента		<10 ppm (1 σ)		≤10 ppm (1 σ)		
Повторяемость масштабного коэффициента (1 σ)	<20 ppm	<10 ppm	<10 ppm	≤10 ppm		
Диапазон рабочих температур		-40°C~+70 °C		-40°C∼+65°C		
Размеры	Q	ў 98 мм х 35 м	М	Q	ў120 мм х 38м	М
Техническая документация						

ОБЛАСТИ ПРИМЕНЕНИЯ

- Авиация
- РакетыУмные боеприпасы
- Беспилотные суда

- БПЛА
- Корабли

SSG-DFM020

ВОЛОКОННО-ОПТИЧЕСКИЙ ГИРОСКОП

КЛЮЧЕВЫЕ ОСОБЕННОСТИ

- Высокая полоса пропускания до 1 кГц
- Стабильность смещения нуля <0.8 град/ч
- Небольшой вес <150 г

- Аналоговый выход
- Устойчивость к ударному воздействию до 1500 g

ОПИСАНИЕ

Волоконно-оптический гироскоп SSG-DFM020 представляет собой датчик угловой скорости, основанный на эффекте Саньяка. Прибор объединяет в себе высоконадежную электронику для осуществления процесса обнаружения, обработки и контроля обратной связи разности фаз, создаваемой двумя пучками света, распространяющимися в противоположном направлении. В данном изделии реализовано измерение сверхвысокой скорости вращения за счет изменения конструкции оптики, структурной поддержки и алгоритмов управления.

ОБЛАСТИ ПРИМЕНЕНИЯ

Авиация

Авиация Ракеты

Умные боеприпасы

- Беспилотные суда
- БПЛА
- Корабли

Параметр	SSG-DFM020A	SSG-DFM020B	
Диапазон угловых скоростей	±240 °/c	±160°/c	
Стабильность смещения нуля	<0.8 °/ч	<1 °/ч	
Нелинейность масштабного коэффициента	<1000 ppm	<600 ppm	
Повторяемость смещения нуля	<0.8 °/ч	<1 °/ч	
Полоса пропускания	>1000 Гц		
Коэффициент случайного блуждания	<0.02 °/√ч	<0.015 °/√ч	
Масштабный коэффициент	47±5 мВ/°/с	8.4 мВ/°/с	
Диапазон рабочих температур	-40 °C ~ +70 °C		
Размеры	82*82*19.5 мм		
Bec	<150 г		

SSG-DFM31

ВОЛОКОННО-ОПТИЧЕСКИЙ ГИРОСКОП

КЛЮЧЕВЫЕ ОСОБЕННОСТИ

- Небольшой размер
- Высокая надежность
- Стабильность смещения нуля: 2 град/ч
- Небольшой вес: 40 грамм
- Полоса пропускания 400 Гц
- Рабочий диапазон температур -40°С~+65°С

ОПИСАНИЕ

SSG-DFM31 волоконно-оптический гироскоп представляет собой датчик угловой скорости, объединяющий оптику, механику и электронику. Он основан на эффекте Саньяка, объединяя особенности распространения света в динамике и высоконадежную электронику, реализует процесс обнаружения, обрабатывая и передавая обратно разность фаз, создаваемую двумя пучками света, распространяющимися в противоположных направлениях.

ОБЛАСТИ ПРИМЕНЕНИЯ

- Робототехника
- Автотранспортная навигация
- Беспилотные автомобили
- Корабли
- БПЛА
- Малогабаритные системы навигации

Параметр	Значение
Диапазон угловых скоростей	±500 °/c
Масштабный коэффициент	3600 LSB/°/c
Нелинейность масштабного коэффициента	<300 ppm
Стабильность смещения нуля	<2 °/ч (10c, 1σ)
Повторяемость смещения нуля	<2 °/ч (1σ)
Коэффициент свободного блуждания	<0.05 °/√ч
Полоса пропускания	400 Гц (ЗдБ)
Габариты	Ø40 x 20.5 мм
Диапазон рабочих температур	-40~+65°C
Bec	40 г

SSG-DFM51

ВОЛОКОННО-ОПТИЧЕСКИЙ ГИРОСКОП

КЛЮЧЕВЫЕ ОСОБЕННОСТИ

- Небольшой размер
- Высокая точность
- Небольшой вес

- Полоса пропускания до 1 кГц
- Диапазон рабочих температур: -40~65°C

■ Вариативность исполнения

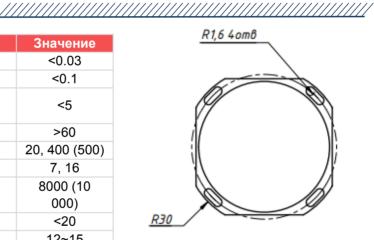
ОПИСАНИЕ

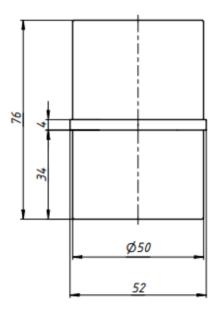
SSG-DFM51 волоконно-оптический гироскоп представляет собой датчик угловой скорости, объединяющий оптоволокно, механику и электронику. Он основан на эффекте Саньяка, объединяя особенности распространения света в динамике и высоконадежную электронику, реализует процесс обнаружения, обрабатывая и передавая обратно разность фаз, создаваемую двумя пучками света, распространяющимися в противоположных направлениях.

ОБЛАСТИ ПРИМЕНЕНИЯ

- Робототехника
- Автотранспортная навигация
- Беспилотные автомобили
- Беспилотные суда
- БПЛА
- Малогабаритные системы навигации

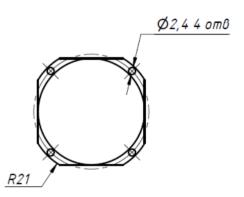
Параметр	DFM51A	DFM51B	DFM51C	DFM51D
Диапазон угловых скорсотей	±500°/c	±300°/c	±60°/c	±60°/c
Масштабный коэффициент	3600 LSB/°/c	7 мВ/°/с	7 мВ/°/с	7 мВ/°/с
Стабильность смещения нуля (10 с, 1σ)	<1.5 °/ч	<2 °/ч	<2 °/ч	<2 °/ч
Повторяемость смещения нуля (1σ)	<1.5 °/ч	<2 °/ч	<2 °/ч	<2 °/ч
Коэффициент случайного блуждания	<0.03 °/√ч	<0.04 °/√ч	<0.02 °/√ч	<0.02 °/√ч
Полоса пропускания	>300 Гц	>450 Гц	>1000 Гц	>1000 Гц
Габариты	Ø24x39 мм	Ø24x39 мм	Ø24x39 мм	Ø24х 51.6 мм
Bec	<30 г			
Диапазон рабочих температур	-40~65 °C			

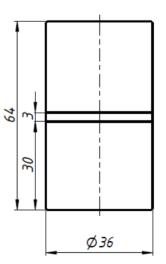

SSG-DTM76


ДИНАМИЧЕСКИ НАСТРАИВАЕМЫЙ ГИРОСКОП

ОСНОВНЫЕ ПАРАМЕТРЫ

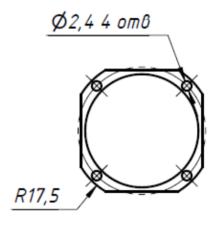
Параметр	Ед. изм	Значение
Случайное блуждание	°/ч	< 0.03
Повторяемость смещения нуля	°/ч	<0.1
Чувствительность смещения нуля к линейным ускорениям	°/ч/g	<5
Собственная частота гироскопа	Гц	>60
Напряжение питание (3 фазы)	В, Гц	20, 400 (500)
Напряжение питания (1 фаза)	В, кГц	7, 16
Синхронная скорость	об/мин	8000 (10 000)
Время синхронизации	С	<20
Выходной градиент	мВ/'	12~15
Сопротивление главной обмотки моментного двигателя	Ом	50±3
Сопротивление вторичной обмотки моментного двигателя	Ом	2±0.5
Масштабный коэффициент главного преобразователя момента	°/ч/мА	>650
Масштабный коэффициент вторичного преобразователя момента	°/ч/мА	>10
Диапазон измерения	°/c	>60
Нелинейность выходного сигнала	%	<0.1
Диапазон рабочих температур	°C	-40~+65
Удар	g	>50
Габаритные размеры	ММ	Ø50 x 76
Bec	грамм	<630

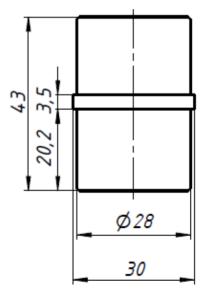

SSG-DTM64


ДИНАМИЧЕСКИ НАСТРАИВАЕМЫЙ ГИРОСКОП

ОСНОВНЫЕ ПАРАМЕТРЫ

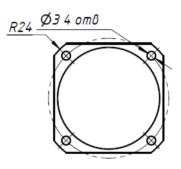
Параметр	Ед. изм	Значение
Случайное блуждание	°/ч	<0.1
Повторяемость смещения нуля	°/ч	<0.3
Чувствительность смещения нуля к линейным ускорениям	°/ч/g	<8
Собственная частота гироскопа	Гц	>70
Напряжение питание (3 фазы)	В, Гц	20, 500
Напряжение питания (1 фаза)	В, кГц	5, 16
Синхронная скорость	об/мин	10 000
Время синхронизации	С	<10
Выходной градиент	мВ/'	10~14
Сопротивление главной обмотки моментного двигателя	Ом	7±1
Сопротивление вторичной обмотки моментного двигателя	Ом	2±0.5
Масштабный коэффициент главного преобразователя момента	°/ч/мА	>680
Масштабный коэффициент вторичного преобразователя момента	°/ч/мА	>10
Диапазон измерения	°/c	>200
Нелинейность выходного сигнала	%	<0.5
Диапазон рабочих температур	°C	-40~+85
Удар	g	>60
Габаритные размеры	MM	Ø34 x 64
Bec	грамм	<250

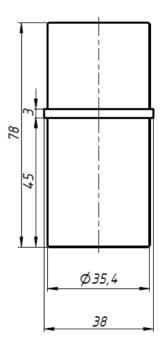

SSG-DTM43


ДИНАМИЧЕСКИ НАСТРАИВАЕМЫЙ ГИРОСКОП

ОСНОВНЫЕ ПАРАМЕТРЫ

Параметр	Ед. изм	Значение
Случайное блуждание	°/ч	<0.3
Повторяемость смещения нуля	°/4	<1
Чувствительность смещения нуля к линейным ускорениям	°/ч/g	<8
Собственная частота гироскопа	Гц	>80
Напряжение питание (3 фазы)	В, Гц	12, 400
Напряжение питания (1 фаза)	В, кГц	5, 16
Синхронная скорость	об/мин	12 000
Время синхронизации	С	<10
Масштабный коэффициент главного преобразователя момента	°/ч/мА	>1500
Диапазон измерения	°/c	>200
Нелинейность выходного сигнала	%	<0.5
Диапазон рабочих температур	°C	-40~+85
Удар	g	>100
Габаритные размеры	ММ	Ø28 x 43
Bec	грамм	<115


SSG-DTM78


ДИНАМИЧЕСКИ НАСТРАИВАЕМЫЙ ГИРОСКОП

ОСНОВНЫЕ ПАРАМЕТРЫ

Параметр	Ед. изм	Значение
Случайное блуждание	°/ч	<0.1
Повторяемость смещения нуля	°/ч	<0.3
Чувствительность смещения нуля к линейным ускорениям	°/ч/g	<8
Собственная частота гироскопа	Гц	>70
Напряжение питание (3 фазы)	В, Гц	10, 205
Напряжение питания (1 фаза)	В, кГц	7, 8
Синхронная скорость	об/мин	6 015
Время синхронизации	С	<10
Выходной градиент	мВ/'	7~10
Сопротивление главной обмотки моментного двигателя	Ом	19±3
Сопротивление вторичной обмотки моментного двигателя	Ом	2±0.5
Масштабный коэффициент главного преобразователя момента	°/ч/мА	>680
Масштабный коэффициент вторичного преобразователя момента	°/ч/мА	>10
Диапазон измерения	°/c	>100
Нелинейность выходного сигнала	%	<0.5
Диапазон рабочих температур	°C	-20~+120
Удар	g	>60
Габаритные размеры	MM	Ø35.4 x 78
Bec	грамм	<330

Поплавковый гироскоп

SSG-FLM37

Поплавковый гироскоп

ОПИСАНИЕ

Серия миниатюрных поплавковых гироскопов SSG-FLM37 отличается высокой точностью позиционирования, хорошей повторяемостью, высокой виброустойчивостью и превосходными динамическими характеристиками. По сравнению с традиционными поплавковыми гироскопами с обратной связью они имеют небольшой размер, низкое энергопотребление и быстрый запуск, легкий вес и другие преимущества. Подходят для высокоточных и небольших по объему систем сервостабилизации..

Параметр	SSG-FLM37A	SSG-FLM37B	SSG-FLM37C
Источник питания двигателя	12 В, 800 Гц, 2- фазная синусоидальная волна	14 В, 1200 Гц, 2- фазная синусоидальная волна	14 В, 1200 Гц, 2- фазная синусоидальная волна
Источник питания возбуждения	7 В 16000 Гц	7 В 9600 Гц	7 В 9600 Гц
Время запуска	≤30 c	≤30 c	≤30 c
Диапазон измерения	±90°/c	±90°/c	±90°/c
Порог/разрешение	≤0,002°/c	≤0,002°/c	≤0,002°/c
Ноль (нормальная температура)	≤0,04°/c	≤0,04°/c	≤0,04°/c
Нулевая стабильность	≤0,01°/с (нормальная температура) ≤0,015°/с (высокая и низкая температура)	≤0,008°/c	≤0,008°/c
Нулевая ошибка в шести позициях	≤0,06°/c	≤0,03°/c	≤0,03°/c
Масштабный коэффициент	≥100 мв/(°/c)	≥100 мв/(°/c)	≥100 мв/(°/c)
Линейность	≤0,2% (FS)	≤0,2% (FS)	≤0,2% (FS)
Рабочая температура	-55~+85°C	-55~+85°C	-55~+85°C
Вибрация	0,12 g 2 /Гц	0,12 g 2 /Гц	0,12 g 2 /Гц
Удар	30 g	60 g	60 g
Габаритные размеры	Ф25,4×57 мм	Ф25,4×61 мм	Ф25,4×61 мм
Bec	≤150 г	≤150 г	≤150 г

Лазерный гироскоп

SSG-RLT06

ЛАЗЕРНЫЙ ГИРОСКОП

ОПИСАНИЕ

SSG-RLT06 - это миниатюрный лазерный гироскоп, разработанный для применения в условиях высокой динамики, ударов и вибрации. Благодаря уникальной конфигурации и технологии усиления, SSG-RLT06 является компактным, прочным и динамически адаптируемым. В зависимости от запросов пользователя, этот продукт может быть поставлен в разных корпусах с предусилительными или полными контрольными схемами. Мы также можем изменять это изделие под конкретные требования пользователя для достижения наилучших характеристик использования. Корпус для прибора выполняется по техническому заданию клиента.

КЛЮЧЕВЫЕ ОСОБЕННОСТИ

- Небольшой размер
- Высокая точность
- Возможность отбора модели по точности
- Корпус под заказ
- Широкий диапазон рабочих температур

ОБЛАСТИ ПРИМЕНЕНИЯ

- Авиация
- Ракеты
- Умные боеприпасы

- Космические аппараты
- Корабли

Параметр	Значение	
Диапазон измерений	±8000 °/c	
Стабильность смещения нуля	(0.5-5 °/ч ограничение значения по запросу)	
Случайное блуждание угла	0.1-0.5 °/ ч	
Стабильность масштабного коэффициента	<150 ppm	
Диапазон рабочих температур	-50~80 °C	
Размеры Ø39 мм*10 мм		
Bec	14±2 г	
Ударное воздействие	>20000	
	g	

Лазерный гироскоп

SSG-RLT030

ЛАЗЕРНЫЙ ГИРОСКОП

ОПИСАНИЕ

SSG-RLT030 - это небольшой лазерный гироскоп, разработанный для применения в условиях высокой динамики, ударов, вибраций. Благодаря уникальной конфигурации и технологии усиления, SSG-RLT030 является компактным, прочным и динамически адаптируемым. В зависимости от запросов пользователя, этот продукт может быть поставлен в разных корпусах с предусилительными или полными контрольными схемами. Мы также можем изменять это изделие под конкретные требования пользователя для достижения наилучших характеристик использования. Корпус для прибора выполняется по техническому заданию клиента.

КЛЮЧЕВЫЕ ОСОБЕННОСТИ

- Небольшой размер
- Высокая точность
- Возможность отбора модели по точности
- Корпус под заказ
- Широкий диапазон рабочих температур

• Трехосная и одноосная конфигурация

ОБЛАСТИ ПРИМЕНЕНИЯ

- Авиация
- Ракеты
- Умные боеприпасы

- Космические аппараты
- Корабли

Параметр	Значение		
Диапазон измерений	>1000 °/c		
Стабильность смещения нуля	0.02~0.1 °/ч ; 0.05 °/ч		
Повторяемость смещения нуля	0.005~0.05 °/ч , 0.03 °/ч		
Случайное блуждание угла	0.003~0.02 °/√ч		
Чувствительность к магнитному полю	<0.002 °/ч/Гс		
Периметр оптического пути	99 мм		
Масштабный коэффициент	6.85"/импульс		
Ошибка масштабного коэффициента	<12 ppm (повторяемость,		
Ошиока масштаоного коэффициента	нелинейность)		
Диапазон рабочих температур	40~+70°C		
Устойчивость к удару	200 g (1/2 sin, 10 мс)		

Лазерный гироскоп

SSG-RL

СЕРИЯ ЛАЗЕРНЫХ ГИРОСКОПОВ

ОПИСАНИЕ

SSG-RL – лазерный гироскоп квадратной конфигурации, разработанный специально для высокоточных применений и экстремальных динамических условий. В зависимости от запросов пользователя, этот продукт может быть поставлен в разных корпусах с предусилительными или полными контрольными схемами. Мы также можем настроить это изделие под конкретные требования пользователя для достижения наилучших характеристик использования.

Модель Параметры	RL030	RL050	RL070	RL090	RL120
Стабильность нулевого смещения (1σ), ^о /Ч	0.005~0.012	0.006~0.015	0.004~0.008	0.002~0.004	0.0005~0.001
Повторяемость нулевого смещения (1σ), %ч	0.0008~0.003	0.003~0.005	0.002~0.004	0.001~0.002	0.0002~0.0004
Коэффициент случайного блуждания, ⁰/√ч	0.0007~0.003	0.0015~0.003	0.001~0.002	0.0004~0.0007	0.0001~0.0002
Диапазон угловых ускорений, °/с	≥ ±2000	≥ ±400	≥ ±400	≥ ±400	≥ ±400
Ошибка масштабного коэффициента (1σ), ppm	≤6	≤5	<3	<2	<1
Воздействия удару, д	50	75	75	75	75
Рабочая температура, °С	-50 ~+80	-40~+70	-40~+70	-40~+70	-40~+70
Вес, кг	0.1	0.64	1.3	2	3.1
Габаритные размеры, мм	63*59*17.8	90*73*51	Ф114*33	151*126*57	182*151*52
Срок службы, лет	22	15	15	15	15

SSI-NS21

ИНЕРЦИАЛЬНЫЙ НАВИГАЦИОННЫЙ МОДУЛЬ

КЛЮЧЕВЫЕ ОСОБЕННОСТИ

- Встроенный модуль БЧЭ тактического класса ■
- Многовекторная система позиционирования
- Поддержка вывода сырых данных ГНСС/БЧЭ и постобработки

Навигационный механизм с глубокой связью ГНСС+ИНС

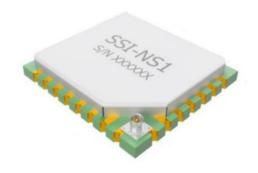
Низкая задержка

ОПИСАНИЕ

Навигационная система SSI-NS21 ГНСС/ИНС, оснащенная высокоточным ГНСС-приемником и БЧЭ тактического класса, а также алгоритмами с глубокой связью, поддерживает двухантенное RTK-позиционирование и определение курса, решая самые сложные задачи в тяжелых условиях, таких как городские каньоны и помехи спутникового сигнала, обеспечивая непрерывное, стабильное и надежное высокоточное позиционирование и ориентацию в реальном времени.

ОБЛАСТИ ПРИМЕНЕНИЯ

Робототехника


- Беспилотные суда
- Автотранспортная навигация
- Навигация морских
- Беспилотные автомобили

Параметр	21A	21B	21C	21D	
Диапазон измерения гироскопа	±500 °/c	±450 °/c	±450°/c	±450 °/c	
Стабильность смещения гироскопа	2.7 º/ч	3 °/4	1.2 °/4	0.8 °/ч	
Диапазон измерения акселерометра	±5 g	±8 g	±10 g	±10 g	
Стабильность смещения акселерометра	2.7 мg(X/Y) 4.4 мg(Z)	70 мд	16 мд	12 мд	
Точность определения курса	Базовая линия = 2 м, 0.08°. Базовая линия = 4 м 0.05°.				
Точность позиционирования	Одна точка: 1.5 м; RTK 1 см + 1 ppm;				

SSI-NS1

ИНЕРЦИАЛЬНЫЙ НАВИГАЦИОННЫЙ МОДУЛЬ

КЛЮЧЕВЫЕ ОСОБЕННОСТИ

- Точность динамического наведения (INS) : 0.2°
- Стабильность смещения гироскопа при движении : 5-7°/ч (тип.)
- Динамическая точность угла продольного/поперечного наклона
 - (INS): 0.03°
- Поверхностный монтаж (SMD)

ОПИСАНИЕ

SSI-NS1 - это миниатюрная высокопроизводительная инерциальная навигационная система с поддержкой ГНСС (ГНСС/ИНС), в состав которой входят трехосные гироскопы, акселерометры и магнитометр, высокочувствительный приемник ГНСС и передовые алгоритмы фильтрации Калмана для получения оптимальных оценок положения, скорости и ориентации. SSI-NS1 - это миниатюрный ГНСС/ИНС в одном корпусе для поверхностного монтажа (SMD).

ОБЛАСТИ ПРИМЕНЕНИЯ

- Робототехника
- Автотранспортная навигация
- Беспилотные автомобили
- Беспилотные суда
- БПЛА

Параметр	Значение
Диапазон измерения гироскопа	±2000°/c
Диапазон измерения акселерометра	±16g
Диапазон измерения магнитометра	±2.5 Гс
Диапазон измерения барометрического высотомера	10-1200 мбар
Позиционирование горизонтальное (без ГНСС)	1.5 м
Точность динамического наведения (INS) :	0.2°
Динамическая точность угла продольного/поперечного наклона (INS)	<0.03°
Размеры (SMT)	24х22х3 мм
Диапазон рабочих температур	-40°C~+85°C

SSI-NS207

МИНИАТЮРНЫЙ ИНЕРЦИАЛЬНЫЙ НАВИГАЦИОННЫЙ МОДУЛЬ

- Точность позиционирования 1 см (СЕР)
- Потеря точности позиционирования спутника 0.4 м (10 с)
- Точность угла курса 0.15 градусов
- Точность определения угла крена и тангажа 0.1 градус

Двух-диапазонный RTK

ОПИСАНИЕ

Система навигации SSI-NS207 серии RTK комбинирует инерциальные измерения и GNSS приемник с двумя частотами на основе промышленных MEMS гироскопов, акселерометров. Встроенный алгоритм многопланового слияния датчиков и калибровка при различных температурах обеспечивают стабильную непрерывную информацию о местоположении, направлении, скорости и ориентации, обеспечивая отличные показатели позиционирования, ориентации и измерения углов ориентации системы в сложных окружениях (подвесные дороги, парковки, тоннели, городские дороги, порты, заслонение деревьями и т. д.). Серия SSI-NS207 включает две модели - SSI-NS207A и SSI-NS207B. Модель SSI-NS207B поддерживает подключение двух антенн, тогда как модель SSI-NS207A поддерживает подключение только одной антенны.

ОБЛАСТИ ПРИМЕНЕНИЯ

- Автотранспортная навигация
- Беспилотные автомобили
- Вспомогательные системы навигации
- Беспилотные суда
- БПЛА

КОМПЛЕКТАЦИЯ ЗАКАЗА

В комплекте к модулю поставляются: две антенны, кабель 3 м, антенный кабель, USB адаптер, а также пакет технической документации к модулю и программному обеспечению SENSSET MANAGER.

ОСНОВНЫЕ ПАРАМЕТРЫ

Время потери блокировки	Точност Режим (СКВ) м					Точность определения
	работы	Гориз	Верт.	Гориз.	Верт.	ориентации ° (СКВ)
	RTK	0.01	0.01	0.05	0.05	0.1
0 c	Одна точка	1.5	1.8	0.05	0.05	0.1
	RTK	2.0	2.0	0.2	0.2	0.1
10 c	Одна точка	3.5	4.0	0.4	0.4	0.2
60 c	RTK	8.0	6.0	0.2	0.2	0.2
	Одна точка	10.0	8.0	0.3	0.3	0.2

Параметр	Значение	Ед. Измерения	Примечание
Диапазон измерения	±450	°/c	
Нестабильность смещения	3	°/ч	По вариации Аллана @25°C
Полоса пропускания	80	Гц	
Диапазон измерения	±6	g	
Нестабильность смещения	10	мкд	По вариации Аллана @25°C
Полоса пропускания	70	Гц	
Bec	78 (A); 82.5(B)	Г	
Размеры	59*45*32 мм		
Диапазон рабочих температур	-40 °C ~ +85 °C		

SSI-NS800

ИНЕРЦИАЛЬНЫЙ НАВИГАЦИОННЫЙ МОДУЛЬ

КЛЮЧЕВЫЕ ОСОБЕННОСТИ

- Габариты 111 х 72 х 72 мм
- Интерфейс RS232, RS422
- Точность определения севера 1° SecL
- Точность горизонтального позиционирования 2 морск. мили/30 мин (СЕР)

ОПИСАНИЕ

SSI-NS800 - это компактная инерциальная навигационная система с волоконно-оптическим гироскопом (ВОГ) и MEMS акселерометрами, которая может использовать внешнюю точную геодезическую и позиционную информацию ГНСС для интегрированной инерциальной спутниковой навигации. В случае недоступности внешней информации ГНСС, инерциальная навигационная система обеспечивает высокую точность инерциальной навигации.

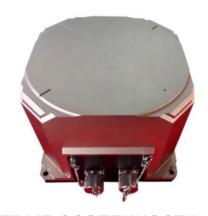
ОБЛАСТИ ПРИМЕНЕНИЯ

Ракеты

Беспилотные суда

Системы стабилизации платформы

БПЛА


■ Дроны

Параметр	Описание	Значение	
T	Чисто инерциальный режим	2 морск.мили/30 мин (СЕР)	
Точность позиционирования	С использованием СВС	1 морск.мили/30 мин (СЕР)	
_	Две антенны	0.2 °/L (L = базовая линия) (СКВ)	
Точность определения курса	Удержание курса	0.3°/30мин (СКВ), 1 °/ч (СКВ)	
курса	Точность определения севера	1° SecL, выставка 15 мин	
_	С использованием ГНСС	0.02° (CKB)	
Точность ориентации	Удержание ориентации	0.3 °/30 мин (СКВ), 1 °/ч (СКВ)	
Гироскоп	Диапазон измерения	±400 °/c	
Акселерометр	Диапазон измерения	±20 g	
Размер		111*72*43 мм	
Bec		<450 г	

SSI-NS412

ИНЕРЦИАЛЬНЫЙ НАВИГАЦИОННЫЙ МОДУЛЬ

<u>КЛЮЧЕВЫЕ ОСОБЕННОСТИ</u>

- Высокоточные параметры позиционирования
- Использование ГНСС приемника в составе

Точность удержания курса при отключении ГНСС <0.06 град/ч

ОПИСАНИЕ

SSI-NS412 представляет собой высокоточную интегрированную навигационную систему, со встроенными тремя волоконно-оптическими гироскопами собственной разработки 105-го типа (SSG-DFM105), тремя кварцевыми акселерометрами и высокоточными накопительными схемами дискретизации. Данный модуль отлично находит свое применение в области морской и авиа навигации.

Параметр	Описание Значение		
Толность позилионирования	Чисто инерциальный режим	0.5 морской мили/ч	
Точность позиционирования	С использованием ГНСС	1.5 м (одна точка)	
Точность определения	C THCC	<0.06 °	
курса	Удержание курса	<0.06 °/ч	
Touris on Mourtouria	С использованием ГНСС	<0.02 °	
Точность ориентации	Удержание ориентации	<0.02 °/ч	
	Время инициализации	≤5 мин	
	Повторяемость выравнивания	≤0.06 °/cosL 1σ	
Поиск севера	угла курса	-0.00 /0002 10	
	Повторяемость выравнивания углов ориентации	≤0.005 °	
Гирокоп	Диапазон измерения	±500 °/c	
Гироскоп	Стабильность смещения нуля	< 80 мкд	
Акоопоромотр	Диапазон измерения	±20 g	
Акселерометр	Стабильность смещения нуля	≤0.01°/ч	
Размеры		178*178*134.5 мм	
Bec		≤ 6 кг	

SSI-NS212

ИНЕРЦИАЛЬНЫЙ НАВИГАЦИОННЫЙ МОДУЛЬ

КЛЮЧЕВЫЕ ОСОБЕННОСТИ

- Компактный размер
- Небольшой вес
- Малое потребление мощности
- Диапазон угловых скоростей до 300 °/с
- Основан на волоконно-оптических гироскопах

ОПИСАНИЕ

SSI-NS212 — высокоточная интегрированная навигационная система. Она оснащена тремя волоконно-оптическими гироскопами собственной разработки, тремя акселерометрами, а также модулем ГНСС. Помимо этого, система реализует высокоточное позиционирование и навигацию в сложных условиях с помощью мультисенсорного слияния и встроенного алгоритма навигации. Изделие отличается высокой надежностью и прочностью.

ОБЛАСТИ ПРИМЕНЕНИЯ

- Робототехника
- Автотранспортная навигация
- Беспилотные автомобили
- Беспилотные суда
- БПЛА
- Вспомогательная ИНС для морских судов

Параметр	Описание	Значение	
	C THCC	<0.2 ° 1σ	
Точность определения	Без использования ГНСС	≤2 °/ч	
курса	Повторяемость корректировки курса	≤1°/cosL 1σ (время поиска севера < 5 мин	
Тошцооть ориоцтоции	C THCC	<0.05°	
Точность ориентации	Без использования ГНСС	≤0.2°/ч	
Точность позиционирования	С ГНСС <1.5 м (1 точка)		
	Без использования ГНСС	≤20 м (100c)	
Гироскоп	Диапазон измерения	-300 °/c~+300 °/c	
Гироскоп	Стабильность смещения нуля	≤0.3°/ч (1σ) (10 с, 1 ч тест)	
Акселерометр	Диапазон измерения	-50 g~+50 g	
Акселерометр	Стабильность смещения нуля	≤100 мкд (1σ) (10 с, 1 ч тест)	
Размеры		68*71*60 мм	

AHRS-модуль

SSAH-RS220

AHRS МОДУЛЬ

КЛЮЧЕВЫЕ ОСОБЕННОСТИ

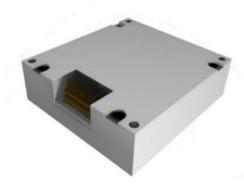
- Габаритные размеры 9.5х9.5х3 мм
- Поверхностный монтаж
- Возможность определения углов Эйлера и магнитного курса
- Высокоточный MEMS гироскоп в составе

- Ударостойкость до 2000 g
- Вес 0.5 грамм

ОПИСАНИЕ

SSAH-RS220 - это высокоточный датчик ориентации, который измеряет трехмерные углы ориентации объекта (включая статические и динамические углы наклона), ускорение, угловую скорость и интенсивность магнитного поля. SSAH-RS220 интегрирует трехосевой MEMS гироскоп, трехосевой MEMS акселерометр и трехосевой магнитный датчик высокого уровня надежности и промышленного стандарта. Благодаря встроенным алгоритмам высокой производительности, алгоритмам компенсации ошибок высокой точности, строгим тестированиям и калибровкам на заводе, датчик обеспечивает точность измерения 0.1° для крена и тангажа, 0.5° для безотносительного путевого угла и 1° для магнитного путевого угла

ОБЛАСТИ ПРИМЕНЕНИЯ


- Робототехника
- Автотранспортная навигация
- Беспилотные автомобили
- Беспилотные суда
- БПЛА

Параметр	Примечание
Точность определения углов Эйлера	0.1° (крен, тангаж) 0.5° (курс) 1σ СКВ, 25°С
Точность определения магнитного курса	1° 1σ CKB, 25°C
Диапазон измерений магнитометра	49 Гс
Нелинейность магнитометра	±0.2%FS
Диапазон измерений гироскопа	±2000 °/c
Нестабильность смещения нуля гироскопа	4 °/ч По вариации Алана @ 25°C (1σ)
Диапазон измерения акселерометра	±16 g
Нестабильность смещения нуля акс.	0.035 mg По вариации Алана @ 25°C (1σ)

SSI-MU98HP

ИНЕРЦИАЛЬНЫЙ ИЗМЕРИТЕЛЬНЫЙ БЛОК

КЛЮЧЕВЫЕ ОСОБЕННОСТИ

- Высокоточный БЧЭ на MEMS датчиках
- Диапазон измерений: гироскоп ±450 °/с, акселерометр ±16g
- Температурная компенсация

- Полоса пропускания до 200 Гц
- Стабильность смещения нуля гироскопа 1 град/ч

ОПИСАНИЕ

Инерциальный измерительный блок SSI-MU98HP - это высокопроизводительный тактический модуль с интегрированными MEMS датчиками. Модуль выводит данные по 3 осям: угловую скорость, данные ускорения, данные магнитометра, а также данные с барометра. Модуль имеет высокие параметры частоты выходного сигнала. Пользователь может настраивать данную частоту через интерфейс модуля с помощью команд.

ОБЛАСТИ ПРИМЕНЕНИЯ

- Робототехника
- Антенны
- Беспилотные автомобили
- Беспилотные суда
- БПЛА
- Стабилизация платформы

	Параметр	Значение	
	Диапазон измерений	±450 °/c	
Гироскоп	Стабильность смещения	1 °/4	
	Полоса пропускания	200 Гц	
	Диапазон измерений	±16 g	
Акселерометр	Стабильность смещения	0.03 мд	
	Полоса пропускания	200 Гц	
Могичтомотр	Диапазон измерений	±2 Гс	
Магнитометр	Шум	50 мкГс (10 Гц)	
Высотомер	Диапазон	450~1100 мбар	
рысотомер	Абсолютная погрешность	1.5 мбар	
	Габариты	47*44*14 мм	
Общее	Bec	50 грамм	
	Диапазон рабочих температур	-40 °C ~ +85 °C	

SSI-MU436

ИНЕРЦИАЛЬНЫЙ ИЗМЕРИТЕЛЬНЫЙ БЛОК

КЛЮЧЕВЫЕ ОСОБЕННОСТИ

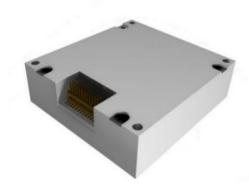
- Нестабильность нулевого смещения гироскопа 1,5°/ч
- Нестабильность нулевого смещения акселерометра 0,035 мg
- Калибровка в полном температурном диапазоне
- Малый размер 22,4×22,4×9,4 мм

■ Выходная частота 1000 Гц

ОПИСАНИЕ

SSI-MU436 - это высокоточный блок чувствительных элементов (БЧЭ), который может измерять угловые скорости и линейные ускорения по трем осям. В SSI-MU436 интегрированы 3-х осевой MEMS гироскоп и 3-х осевой MEMS акселерометр промышленного класса. SSI-MU436 достигает нулевой нестабильности 1,5°/ч для гироскопа и нулевой нестабильности 0,035 мд для акселерометра.

ОБЛАСТИ ПРИМЕНЕНИЯ


- Робототехника
- Автотранспортная навигация
- Беспилотные автомобили
- Беспилотные суда
- БПЛА

Параметр	Значение
Диапазон измерения гироскопа	±450° /c
Диапазон измерения акселерометра	±4 g
Нестабильность смещения нуля акселерометра 1 σ	0.035 мд
Нестабильность смещения нуля гироскопа 1 σ	1.5 °/ч
Повторяемость смещения нуля акселерометра 1 σ	1 мд
Повторяемость смещения нуля гироскопа 1 σ	0.01 °/c
Выходная частота	до 1000 Гц
Габаритные размеры	22.4*22.4*9.4 мм
Bec	8 г
Диапазон рабочих температур	-40~85 °C

SSI-MU99HP

ИНЕРЦИАЛЬНЫЙ ИЗМЕРИТЕЛЬНЫЙ БЛОК

КЛЮЧЕВЫЕ ОСОБЕННОСТИ

- 3 оси угловых скоростей
- 3 оси линейных ускорений
- Встроенный магнитометр
- Барометрический высотомер

 Высокоточные MEMS датчики в составе

Аналог на ADIS16488

ОПИСАНИЕ

SSI-MU99HP - это инерциальный измерительный блок (ИИБ), со встроенным высокопроизводительным гироскопом MEMS и акселерометром MEMS, выдающим 3 угловые скорости, 3 линейных ускорения, 3 оси магнитометра и значение барометрической высоты. SSI-MU99HP отличается высокой надежностью и устойчивостью к внешним воздействиям.

ОБЛАСТИ ПРИМЕНЕНИЯ

- Робототехника
- Автотранспортная навигация
- Беспилотные автомобили
- Беспилотные суда
- БПЛА
- Стабилизация платформы

	Параметр	Значение
	Диапазон измерений	±500 °/c (±2000 °/c)
Гироскоп	Стабильность смещения	0.8 °/ч
	Полоса пропускания	200 Гц
	Диапазон измерений	±16 g (±200 g)
Акселерометр	Стабильность смещения	0.03 мд
	Полоса пропускания	200 Гц
Могиитомотр	Диапазон измерений	±2500 мкТл
Магнитометр	Разрешение	0.3 мкТл
Высотомер	Диапазон	300~1100 мбар
высотомер	Смещение	4.5 мбар
Общее	Габариты	47*44*14 мм
Оощее	Bec	50 грамм

SSI-MU75

ИНЕРЦИАЛЬНЫЙ ИЗМЕРИТЕЛЬНЫЙ БЛОК

КЛЮЧЕВЫЕ ОСОБЕННОСТИ

- Высокоточный миниатюрный БЧЭ с полной калибровкой
- Аналог STIM300
- 3 оси акселерометр, 3 оси гироскоп
- Стабильность смещения нуля гироскопа: 0.5 град/ч, акселерометра ±0.02 мд
- Диапазон рабочих температур -45~+85 °C

ОПИСАНИЕ

Высокоточный инерциальный измерительный блок SSI-MU75 состоит из трехосевого гироскопа, трехосевого акселерометра и трехосевого инклинометра, которые могут измерять угловую скорость, линейное ускорение и угол наклона носителя. Продукт обладает такими характеристиками, как высокая точность, низкое энергопотребление, малый корпус, высокая адаптивность и цифровой выход.

ОБЛАСТИ ПРИМЕНЕНИЯ

- Робототехника
- Стабилизация платформы
- Беспилотные автомобили
- Беспилотные суда
- БПЛА
- Умные боеприпасы

Параметр	Значение
Диапазон угловых скоростей	400°/c~2000°/c
Стабильность смещения нуля на полном температурном диапазоне (1σ)	1°/ч ~ 20 °/ч
Полоса пропускания гироскопа	125 Гц
Коэффициент случайного блуждания	0.1 °/√ч
Диапазон линейных ускорений	±10 g ~ ±40 g
Стабильность смещения нуля	0.1 мд ~ 0.3 мд
Нелинейность масштабного коэффициента	500 ppm
Неортогональность осей	0.6 мрад
Полоса пропускания акселерометра	125 Гц
Диапазон рабочих температур	-45°C ~ +85°C
Габариты	44.8 мм х 38.6 мм х 20 мм

SSI-MU90

ИНЕРЦИАЛЬНЫЙ ИЗМЕРИТЕЛЬНЫЙ БЛОК

КЛЮЧЕВЫЕ ОСОБЕННОСТИ

- Габариты 90х90х90 мм
- Bec <1 кг</p>
- Диапазон рабочих температур -45~+65°С
- Напряжение питания ±5B ±15B
- Имеет в основе работы волоконнооптические гироскопы

■ Диапазон измерений ±500 ~ ±1000 °/с, ±30 g

ОПИСАНИЕ

Волоконно-оптические инерциальные измерительные приборы серии SSI-MU90 состоят из трех волоконно-оптических гироскопов с замкнутым контуром, трех высокостабильных кварцевых акселерометров и платы сбора данных. Они используются для измерения угловой скорости и линейного ускорения носителя для получения информации, необходимой для управления положением и навигацией носителя, а результаты измерений выводятся через цифровой последовательный порт RS422.

ОБЛАСТИ ПРИМЕНЕНИЯ

- Робототехника
- Умные боеприпасы
- Беспилотные автомобили
- Беспилотные суда
- БПЛА
- Ракеты

Параметр	MU90A	MU90B	MU90C
Диапазон угловых скоростей	±500 °/c		
Стабильность смещения нуля	≤0.1 °/ч	≤0.2 °/ч	≤0.3 °/ч
Повторяемость смещения нуля	≤0.1 °/ч	≤0.1 °/ч ≤0.2 °/ч	
Полоса пропускания	200 Гц		
Диапазон линейных ускорений	≥±30 g		
Смещение	±7 g		
Диапазон рабочих температур	-45~+65 °C		
Габаритные размеры	90 Х 90 Х 90 мм		
Bec	980±20 г.		

SSI-MUF91xx

ИНЕРЦИАЛЬНЫЙ ИЗМЕРИТЕЛЬНЫЙ БЛОК

КЛЮЧЕВЫЕ ОСОБЕННОСТИ

- Полностью цифровой вывод через электрический интерфейс RS-422
- Дизайн с превосходной адаптацией к окружающей среде
- Высокий уровень инженерии, высокая стоимостная эффективность

■ Диапазон рабочих температур -40~+65 °C

ОПИСАНИЕ

Инерциальный измерительный блок (ИИБ) - инерциальное измерительное устройство, разработанное для систем навигации, управления и измерения ориентации небольших ракет, управляемых объектов и других систем. ИИБ состоит из трех твердотельных оптических гироскопов, трех кварцевых акселерометров и платы сбора данных. Он измеряет угловую скорость и линейное ускорение движения носителя, предоставляя информацию о его ориентации и управлении навигацией.

ОБЛАСТИ ПРИМЕНЕНИЯ

- Умные боеприпасы
- Автотранспортная навигация
- Авианавигация

- Беспилотные суда
- БПЛА
- Стабилизация антенны

Параметр	MU91L	MU91M	MU91N
Диапазон угловых скоростей		±500 °/c	
Стабильность смещения нуля	≤0.5 °/ч	≤0.3 °/ч	≤0.2 °/ч
Повторяемость смещения нуля	≤0.5 °/ч	≤0.3 °/ч	≤0.2 °/ч
Полоса пропускания	100 Гц		
Нелинейность масштабного коэффициента	≤30 ppm	≤20 ppm	≤20 ppm
Диапазон линейных ускорений	≥±40 g		
Смещение	≤±7 мg		
Габаритные размеры	Ø80*70 мм		
Диапазон рабочих температур	-40~+65 °C		

SSI-MU600G

ИНЕРЦИАЛЬНЫЙ ИЗМЕРИТЕЛЬНЫЙ БЛОК

ОПИСАНИЕ

Оптическая инерциальная система SSI-MU600G предоставляет в режиме реального времени высокочастотную и высокоточную навигационную информацию трехмерной ориентации скорости положении и другие показатели инерциальных величин, такие как угловые скорости и линейные ускорения. Система использует три волоконно-оптических гироскопа и три ортогонально установленных кварцевых акселерометров для формирования инерциального измерительного модуля (ИИБ).

ОБЛАСТИ ПРИМЕНЕНИЯ

- Стабилизация антенн
- Автотранспортная навигация
- Беспилотные автомобили
- Беспилотные суда
- БПЛА
- Корабли

Параметр	Значение
Диапазон угловых скоростей	±500 °/c
Стабильность нулевого смещения	≤0.06 °/ч
Полоса пропускания	300 Гц
Повторяемость нулевого смещения	≤0.06 °/ч
Диапазон линейных ускорений	±70 g
Стабильность нулевого смещения	≤0.1 мд
Полоса пропускания	≥800 Гц
Повторяемость нулевого смещения	≤0.1 mg
Интерфейс	RS422
Время выравнивания	≤10 мин. (есть возможность быстрого выравнивания: ≤5 мин)
Габариты	≤Ø110мм×90мм, Внешние разъемы и монтажные уголки в комплект поставки не входят;
Bec	≤1.7 кг
Диапазон рабочих температур	-55°C~+70°C

SSI-MU210

ИНЕРЦИАЛЬНЫЙ ИЗМЕРИТЕЛЬНЫЙ БЛОК

КЛЮЧЕВЫЕ ОСОБЕННОСТИ

- Точность позиционирования 1 см (СЕР)
- Потеря точности позиционирования спутника 0.4 м (10 с)
- Точность угла курса 0.15 градусов
- Точность определения угла крена и тангажа
 0.1 градус

Двух-диапазонный RTK

ОПИСАНИЕ

SSI-MU210 - это высокоточный измерительный модуль. Внутри модуля находятся три волоконно-оптических гироскопа серии SSG-DFM31 и три MEMS акселерометра. Этот продукт обладает высокой надежностью и адаптируется к различным условиям окружающей среды.

ОБЛАСТИ ПРИМЕНЕНИЯ

- Робототехника
- Автотранспортная навигация
- Беспилотные автомобили
- Беспилотные суда
- БПЛА

Параметр	Значение
Диапазон угловых скоростей	±500 °/c
Стабильность смещения нуля	<0.12 °/ч (1σ)
Повторяемость смещения нуля	<0.1 % (1σ)
Полоса пропускания	300 Гц
Ошибка нуля	-0.25 °/ч ~ +0.25 °/ч
Диапазон линейных ускорений	±20 g
Стабильность смещения нуля	<100 мкg (1σ) (10 с, 1 час тест)
Повторяемость смещения нуля	<100 мкд (1σ) (10 с, 1 час тест)
Нелинейность масштабного коэффициента	<300 ppm
Диапазон рабочих температур	-40°C ∼ +60°C
Габариты	78х78х80 мм
Bec	<700 грамм

SSI-NC100

ИНКЛИНОМЕТР

КЛЮЧЕВЫЕ ОСОБЕННОСТИ

- Высокая точность определения угла: ±0.01°
- Одноосная/двухосная конфигурация с диапазоном от ±5° до ±360°
- Интерфейс RS485 (RS232 опционально)
- Широкий диапазон напряжения питания 9~36 В

ОПИСАНИЕ

Инклинометр серии SSI-NC100 - это высокоточный двухосевой цифровой инклинометр с выходными интерфейсами RS485 или RS232, обладающий высокой точностью:±0,01° (комнатная температура) и широким набором опций для охвата диапазона измерений от±5° до 360°. Применяя новейшую технологию MEMS, изделие обладает превосходными характеристиками по нелинейности, повторяемости, температурному дрейфу, шуму и ударопрочности, а также имеет малые размеры и низкое энергопотребление

ОБЛАСТИ ПРИМЕНЕНИЯ

- Стабилизация платформы
- Стабилизация антенны
- Контроль угла наклона

Параметр	Значение	
Диапазон измерений	±5°, ±10°, ±15°, ±30°, ±60°, ±90°, ±180°, 0~360°	
Оси	Х-Ү или Х	
Точность	±0.01 °	
Разрешение	0.001 °	
Частота выходных данных	5~100 Гц	
Напряжение питания	5-36 B	
Ток	<15 мА @24 В	
Диапазон рабочих температур	-40~+85 °C	
Габариты	93.8×55.5×26 мм	
Bec	250 г	

ИНЕРЦИАЛЬНЫЕ ДАТЧИКИ

- MEMS акселерометры
- IEPE акселерометры
- Кварцевые акселерометры
- Волоконно-оптические гироскопы
- Инерциальные навигационные системы
- Инерциальные измерительные блоки

ДАТЧИКИ ПОЛОЖЕНИЯ

- Емкостные
- Индуктивные
- Оптические
- Ультразвуковые

ДАТЧИКИ ГАЗА

- Электрохимические
- Каталитические
- Оптические
- Полупроводниковые

ДАТЧИКИ ДАВЛЕНИЯ

- Пьезорезистивные
- Пьезорезистивные тензодатчики
- Пьезорезистивные тензодатчики с резьбой
- Пьезорезистивные тензодатчики промышленного типа

ДАТЧИКИ ТЕМПЕРАТУРЫ

- Цифровые микросхемы
- Аналоговые микросхемы
- PTC/NTC термисторы
- RTD датчики
- Другие устройства на основе датчиков температуры

ДРУГИЕ ДАТЧИКИ

- ИС для индуктивного датчика положения
- Пироэлектрический ИК датчик
- Датчики тока/напряжения
- Магнитострикционные датчики уровня
- Фотодиоды

Компания Sensset занимается проектированием, разработкой, производством и поставкой высокотехнологичных сенсоров различного типа для разработчиков и производителей электроники в различных отраслях: авиа-и машиностроения, IT-разработки, медицинского и промышленного оборудования, радиоэлектроники, телекоммуникации, систем безопасности. Датчики компании Sensset успешно используются при производстве и модернизации продукции военного и специального назначения. Технические специалисты и инженеры компании помогут подобрать решения под ваши задачи, опираясь на нашу номенклатуру датчиков, с учетом всех требуемых параметров:

для более экономичных решений вместо существующих в схеме датчиков

для замены на их аналоги, которые могут быть полными или функциональными (ближайшими)

Предоставляем возможность:

доработки или изменения ТТХ имеющегося датчика

модернизации серийного ассортимента

разработки нового уникального датчика по ТЗ заказчика

запуска полного цикла изготовления датчика на наших производственных мощностях

Разработка, производство и поставки высокотехнологичных сенсоров

КОНТАКТЫ

- 8-812-309-58-32
- HTTPS://SENSSET.RU
- 198099, Г. САНКТ-ПЕТЕРБУРГ УЛ. КАЛИНИНА, ДОМ 2, КОРПУС 4, ЛИТЕРА А.

